On the Lipschitz stability of inverse nodal problem for Dirac system
نویسندگان
چکیده
Inverse nodal problem on Dirac operator is determination of the parameters in boundary conditions, number m and potential function V by using a set points component two vector eigenfunctions as given spectral data. In this study, we solve stability show that space all functions homeomorphic to partition asymptotically equivalent sequences induced an equivalence relation. Moreover, give reconstruction formula for limit sequence associated data one eigenfunction. Our technique depends explicit asymptotic expressions and, it basically similar [1, 2] which Sturm-Liouville Hill's operators, respectively.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملLipschitz stability in an inverse hyperbolic problem with impulsive forces
Let u = u(q) satisfy a hyperbolic equation with impulsive input: ∂ t u(x, t)−4u(x, t) + q(x)u(x, t) = δ(x1)δ(t) and let u|t<0 = 0. Then we consider an inverse problem of determining q(x), x ∈ Ω from data u(q)|ST and (∂u(q)/∂ν) |ST . Here Ω ⊂ {(x1, . . . , xn) ∈ R|x1 > 0}, n ≥ 2, is a bounded domain, ST = {(x, t); x ∈ ∂Ω, x1 < t < T + x1}, ν = ν(x) is the unit outward normal vector to ∂Ω at x ∈ ...
متن کاملA remark on Lipschitz stability for inverse problems
An abstract Lipschitz stability estimate is proved for a class of inverse problems. It is then applied to the inverse Robin problem for the Laplace equation and to the inverse medium problem for the Helmholtz equation. Key-words: Derivative in the sense of Fréchet, Lipschitz stability, inverse Robin problem, inverse medium problem ha l-0 07 41 89 2, v er si on 1 15 O ct 2 01 2 Une remarque sur ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty of Sciences University of Ankara. Series A1: mathematics and statistics
سال: 2021
ISSN: ['1303-5991']
DOI: https://doi.org/10.31801/cfsuasmas.733215